2018-02-19

1 ИНЖЕНЕНАЯ ЦИФРОВАЯ МОДЕЛЬ МЕСТНОСТИ ДЛЯ ГЕНПЛАНА

1.1 Исходные данные

- Текстовый файл с точками рельефа местности *1_Relief_Genplan.txt*;

- Текстовый файл с рельефными точками берегов реки 2_*River_Genplan.txt*;

- Текстовые файлы с ситуационными точками контуров кустарников и леса:

3_Bush_Genlpan.txt; 4_Forest_Genlpan.txt; 5_Green_Genlpan.txt .

1.2 Начало работы в IndorCAD/Road 9

Вызывают программу по её ярлыку, находящемся на рабочем столе компьютера. В открывшемся окне выбирают позицию «Создать новый», тем самым создавая новый *проект* (файл), который по умолчанию называется «Безымянный» [1]. На экране монитора появляется *главное окно* системы.

1.3 Настройка проекта

Перед началом работы необходимо настроить создаваемый проект, для чего вызывают команду:

«Проект» / «Настройки проекта» / «Настройки проекта...».

В настройках требуется изменить масштаб проекта – ввести значение: 1:10000, а также точность представления чисел и знаков (количество десятичных знаков): отметок z - 2, уклонов – 0. Набрав необходимые данные в строке значений, нужно обязательно нажать клавишу **<Enter>**.

1.4 Ввод точек рельефа из текстового файла

1.4.1 Активируют команду: «Данные / Поверхность / Файлы описания точек (*.txt)». Через открывшееся окно «Импорт файла» открывают текстовый файл *1_Relief_Genplan.txt*, после чего откроется окно «Мастер импорта текстового файла».

1.4.2 На первом шаге мастера «Выбор формата данных и первой строки с данными» задают позицию «Столбцы отделяются разделителями». Номер первой строки с данными – 2, так как в первой строке помещена шапка таблицы.

1.4.3 На втором шаге «Выбор символа, разделяющего столбцы данных в файле» ставят флажки напротив символов-разделителей «Пробелы» и «Табуляции». В результате сформируется таблица, состоящая из 4 столбцов.

1.4.4 На третьем шаге «Выбор назначения столбцов данных» в шапке таблицы для первого столбца назначают Имя, представляющее собой порядковый

номер точки, для второго – название [Север, м] (координата *X* в применяемой геодезической системе координат), для третьего – [Восток, м] (координату *Y*), для четвертого – отметку [**Z**].

1.4.5 На четвертом шаге «Задание дополнительных настроек» следует убрать все флажки, чтобы не соединять все точки линией и не менять знак у отметок. Для выполнения импорта точек нажимают кнопку «Готово». В рабочем окне автоматически на введенных точках построится поверхность в виде совокупности треугольников (рис. 1.1).

1.4.6 В дереве объектов ставим флажок напротив объекта «Изолинии» и в Инспекторе объектов для изолиний задаём шаг горизонталей 1 м, а способ построения горизонталей на ветви «Прочее» – «Сглаживать по сплайнам».

1.4.7 Чтобы были видны имена введённых точек, следует вызвать Инспектор объектов для них. Для этого, в дереве проектов курсором мыши нужно выделить объект «Точки». В Инспекторе объектов на ветви «Параметры / Вид подписи» задать значение «Имя». На ветви «Стиль текста» – высоту символов 2,5.

1.5 Моделирование реки

1.5.1 Аналогичным образом из текстового файла **2_River_Genplan.txt** вводятся точки, описывающие границы уреза воды в реке, только на четвёртом шаге **Мастера импорта объектов** необходимо поставить флажок напротив позиции «**По завершении соединить точки последовательно в линию**». Линия правого берега моделируется точками с буквой **R** (*Right* – правый). Линия левого берега моделируется точками с буквой **L** (*Left* – левый).

1.5.2 Чтобы выделить реку в отдельный объект, необходимо построить *полигон* – замкнутую линию. Для этого выделим построенную линию, щёлкнув ЛКМ в любом месте линии, кроме её узлов (введённых точек). Линия подсветится жёлтым цветом. Замыкаем контур, т.е. курсором мыши нажимаем на последнюю точку линии (точка **R1**) и, не отпуская кнопки мыши, переносим курсор на первую точку линии (точку **L1**). Полигон образовался. На освободившуюся точку **R1** переносим центр отрезка, соединяющего точки **L1** и **R2**.

1.5.3 Далее, необходимо поменять статус полигона с ситуационного на структурный, тогда границы разлива реки войдут в триангуляцию рельефа. Вызываем Инспектор объектов для полигона (в Дереве проектов выделяем объект «Полигоны и линии»). Выделяем построенный полигон (щелкнув ЛКМ по линии полигона). В Инспекторе объектов для выделенного полигона меняем в позиции «Статус» значение «Ситуационный» на значение «Структурный».

Триангуляция перестроилась автоматически. В позиции «Свойства полигонов» выбираем стиль заливки – Индивидуальный. В позиции «Цвет фона» выбираем светло-синий цвет.

1.5.4 Зададим название реки. Активизируем процедуру «Главная / Тексты / Тексты». Ставим курсор мыши в начале реки, снова щёлкаем ЛКМ, чтобы объект «Текст» подсветился. В Инспекторе объектов в графе «Текст» задаём название реки – «р. Терехтюль». На ветви «Стиль текста» у параметра «Цвет символов» выбираем белый цвет.

1.6 Построение растительных зон

1.6.1 Активируют команду: «Данные / Поверхность / Файлы описания точек (*.txt)». Через открывшееся окно «Импорт файла» открывают текстовый файл 3_Bush_Genplan.txt, после чего откроется окно «Мастер импорта текстового файла». Точки этого файла моделируют зону кустарниковой растительности.

1.6.2 В этом файле содержатся ситуационные точки. Код ситуационной точки – нечётное число, поэтому в данном файле таблица содержит 5 столбцов. На третьем шаге **Мастера импорта текстового файла** в шапке таблицы для первого столбца назначают **Имя**, для второго – название [Север, м] (координата *X* в применяемой геодезической системе координат), для третьего – [Восток, м] (координату *Y*), для четвертого – отметку [**Z**], для пятого – Код.

1.6.3 На четвёртом шаге **Мастера импорта объектов** необходимо поставить флажок напротив позиции «По завершении соединить точки последовательно в линию». Все точки соединятся в полигон (в текстовом файле первая точка линии **B1** дублируется в конце списка).

1.6.4 Выделяем построенную линию двойным щелчком ЛКМ по ней. В окне Инспектора объектов задаем параметры:

- статус – Ситуационный;

- стиль контура - Индивидуальный;

- цвет линии – **зелёный**;

- стиль заливки полигона – Индивидуальный;

- Условные знаки \ Выбрать – растительность, кустарники (заросли); Масштаб знаков – 100.

- Фоновая закраска \ цвет фона – зелёный.

1.6.5 Аналогично импортируем файл *Forest_Genlpan.txt*. В качестве заполнения – **Поросль леса (разрежена 1:4).**

1.6.6 Аналогично импортируем файл *Ggeen_Genlpan.txt*. В качестве заполнения – **Отдельные кустарники.**

1.7 Анализ территории по уклонам рельефа

1.7.1 Пригодность территории для размещения различных функциональных зон города определяется по таблице 1.1. Для оценки благоприятности территорий вычерчивают карту планировочных ограничений по уклонам рельефа площадок. На карте выделяют участки с уклонами: менее 3 ‰, от 3 до 5 ‰; от 5 до 50 ‰, от 50 ‰ до 100 ‰, от 100 ‰ до 200 ‰ и более 200 ‰ [2].

Рисунок 1.1 – Инженерная цифровая модель местности

Наименование функциональных зон города	Благоприятность территорий, ‰		
	Благоприятные	Неблагоприятные	Особо неблагоприятные
Селитебная	5-100	менее 5; 100-200	более 200
Производственная	3-50	менее 3; 50-100	более 100
Ландшафтно-рекреационная	менее 100	более 100	нет

Таблица 1.1 – Благоприятность территорий по уклонам рельефа

1.7.2 Включим отображение уклонов триангуляции (флажок в дереве Инспектора объектов для триангуляции). На поверхности появятся стрелки, показывающие направления и величины уклонов поверхности. Установим флажок «Подписывать величину уклона», размер подписей – 2,5 мм. Убираем

флажок «Зависит от уклона», тогда все стрелки будут иметь одинаковый размер. С помощью бегунка выберем подходящий размер стрелок, показывающих величину уклона (1,5). Проанализируем уклоны местности. Заметим, что области с уклонами менее 5 ‰ находятся вдоль берега реки.

1.7.3 Для построения картограммы анализа уклонов местности создаём новый слой по команде «Проект / Создать слой». Автоматически он стал активным. Присваиваем ему имя «Анализ местности».

1.7.4 В этом слое строим полигоны вокруг областей с уклонами меньше 5 ‰ с помощью команды «Главная / Линии / По существующим и новым точкам», так как в только что построенном слое

Рисунок 1.2 – Зоны с уклоном местности менее 5‰

точек нет. Строим полигоны и в инспекторе объектов для них задаём стиль заливки – Индивидуальный и цвет заливки – жёлтый (в соответствии с [2]). В любой момент слой картограммы можно сделать невидимым, если снова сделать слой ЦММ активным (дважды щёлкнуть по нему в дереве проектов) и убрать флажок напротив слоя «Анализ местности».

1.8 Анализ территории по затопляемости паводками

1.8.1 Вероятность затопления территорий поверхностными водами зависит от количества осадков в исследуемом районе, размеров водосборного бассейна водоема, рельефа местности, состава грунтов и почв, температурных условий местности [2].

Каждый конкретный водоем имеет свои характеристики колебаний уровня воды. В учебной работе допускается принять следующие условия:

затопляемость 1 раз в 100 лет (1 % обеспеченность) – 5 м выше среднегодового уровня водоема, показанного на топографическом плане;

затопляемость 1 раз в 50 лет (2 % обеспеченность) – 2,5 м;

затопляемость 1 раз в 20 лет (5 % обеспеченность) – 1 м.

1.8.2 Линии затопления местности вычерчиваются в слое «Анализ местности», следовательно, перед началом построения необходимо убедиться, что этот слой является активным.

1.8.3 В этом слое задаём шаг горизонталей 1 м, чтобы схематично определить возвышение местности над уровнем воды.

1.8.4 Построим границы затопления обеспеченностью 2 %. Строим с

Рисунок 1.3 – Границы затопления

помощью команды «Главная / Линии / По существующим и новым точкам». Придерживаемся высоты над водой 2,5 м.

1.8.5Затемлиниюоформляем.Винспектореобъектов задаёмеёстатусситуационная.(Чтобы)

выделить линию, необходимо щёлкнуть по ней дважды ЛКМ). В группе объектов «Стиль линии» задаём «Индивидуальный». В группе «Условные знаки» по графической кнопке **«Выбрать»** задаём папку «Линии строительного чертежа» и выбираем линию «Штриховая 1,5:1,5». Цвет линии – синий.

1.8.6 Подписываем линии с помощью процедуры «Главная / Тексты / Тексты». Ставим курсор мыши в начале реки, снова щёлкаем ЛКМ, чтобы объект «Текст» подсветился. В инспекторе объектов в графе «Текст» вводим подпись – «Линия затопления обеспеченностью 2 %».

1.8.7 Аналогичным образом строим линию затопления обеспеченностью 1% выше уровня воды, примерно, на 5 м.

Источники информации

1 Система проектирования IndorCAD. Построение, обработка и анализ цифровой модели местности: Руководство пользователя / И.В. Кривых, В.Н. Бойков, Д.А. Петренко, А.В. Скворцов, Н.С. Мирза. – Томск: Изд-во Том. ун-та, 2008. – 300 с.

2 Планировка, застройка и реконструкция населенных мест. Генеральный план малого города: Учеб.-метод. пособие [Электронный ресурс] / сост. С. В. Тутаев. – Электрон. дан. – Красноярск: Сиб. федер. ун-т, 2012.