4 ОБОСНОВАНИЕ ЭЛЕМЕНТОВ ПОПЕРЕЧНЫХ ПРОФИЛЕЙ УЛИЦЫ

4.1 Категории улиц и их основные технические показатели

Категории улиц, рассматриваемые в курсовой работе:

- Магистральная улица общегородского значения регулируемого движения (МУРД). Транспортная сеть между жилыми, промышленными районами и центром города, центрами планировочных районов. Выходы на магистральные автомобильные улицы дороги внешние дороги. Пересечение И магистральными улицами и дорогами, как правило, в одном уровне.
- Магистральная улица районного значения транспортно-пешеходная (МУТП). Транспортная и пешеходная связь между жилыми и промышленными районами, общественными центрами, выходы на другие магистральные улицы.
- Магистральная улица районного значения пешеходно-транспортная (МУПТ). Пешеходная и транспортные связи (преимущественно общественный пассажирский транспорт) в пределах планировочного района.
- Улица местного значения улица в жилой застройке (УЖЗ). Транспортная (без пропуска грузового и общественного транспорта) и пешеходная связи на территории жилых районов (микрорайонов), выходы на магистральные улицы и дороги регулируемого движения.

Таблица 1.1 - Основные технические показатели проектируемой дороги [1]

Показатель	Ед. изм.	Категория улицы			
HORASATCHE		МУРД	МУТП	МУПТ	УЖЗ
1 Расчетная скорость движения автомобиля	км/ч	80	70	50	40
2 Ширина полосы движения	M	3,5	3,5	4,0	3,0
3 Ширина полосы, предназначенной для движения общественного транспорта	М	4,0	4,0	4,0	4,0
4 Число полос движения	-	4÷8	2÷4	2	2-3
5 Наименьший радиус кривых в плане	M	400	250,0	125	90
6 Наибольший продольный уклон	%	50	60	40	70
7 Ширина пешеходной части тротуара	M	3,0	2,25	3,0	1,5

4.2 Расчет пропускной способности одной полосы движения

Пропускную способность для одной полосы движения определяют по формуле [2]

$$N = \frac{3600 \cdot v}{L} \cdot K \,, \tag{4.1}$$

где v — расчетная скорость движения автомобиля, м/c; L — «динамический габарит автомобиля» (безопасное расстояние между автомобилями с учетом длины самого автомобиля), м; K — коэффициент снижения пропускной способности из-за задержек на перекрестке. «Динамический габарит» автомобиля складывается из пути, пройденного автомобилем за период психологической реакции водителя l_1 , пути торможения l_2 , запасного расстояния l_3 и длины автомобиля l_4 :

$$L = l_1 + l_2 + l_3 + l_4, \text{ M} . \tag{4.2}$$

Время психологической реакции водителя обычно принимаю равным 1 с. Тогда путь, проходимый автомобилем за время реакции водителя рассчитываем по формуле

$$l_1 = v \cdot t , M. \tag{4.3}$$

Тормозной путь автомобиля определяют по формуле

$$l_2 = \frac{v^2 K_9}{2g(\phi \pm i)}, M,$$
 (4.4)

где v — скорость движения автомобиля, м/с; K_3 — коэффициент эффективности торможения (1,4 — для легковых; 1,7 — для грузовых); g — ускорение силы тяжести (9,81 м/с²); ϕ — коэффициент сцепления шин с поверхностью дороги (принимается по табл. 2); i — продольный уклон проезжей части (при движении на подъем со знаком «плюс», при движении на спуск — со знаком «минус»). Наиболее тяжелый случай — это движение на спуск, поэтому в расчетах принимаем знак «минус».

При оценке тормозного пути предварительно принимаем уклон земли по оси будущей трассы. Если он превышает максимально допустимый для данной категории, то принимается максимально допустимый уклон.

, 1	1 '		1	
Тип покрытия	Коэффициент сцепления при разном состоянии покрытия			
	чистое сухое	чистое влажное	грязное мокрое	
Асфальтобетонное	0,5	$0,3 \div 0,4$		
Цементобетонное	0,5	$0,3 \div 0,4$	$0.1 \div 0.25$	
Асфальтобетонное	$0.7 \div 0.8$	$0.5 \div 0.6$	0,1 + 0,23	
повышенной шероховатости	0,7 · 0,8	0,5 . 0,0		

Таблица 4.2 – Значение коэффициентов сцепления шин автомобиля с покрытием

Запасное расстояние между остановившимися автомобилями принимается равным 3 м, а длина легкового автомобиля 4-6 м.

Величину коэффициента K, учитывающего потери времени на перекрестке определяют по формуле

$$K = \frac{L_{\Pi} \cdot T_{\mu}}{\left(t_{3} + t_{x}\right) \cdot L_{\Pi} + \nu \cdot \left(\left(t_{K} + t_{x}\right) \cdot \left(\frac{L_{\Pi}}{\nu} + \frac{\nu}{2}\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + t_{\Delta}\right)\right)},\tag{4.5}$$

где $L_{\rm II}$ — расстояние между регулируемыми перекрестками, м; $T_{\rm II}$ — продолжительность цикла регулирования, c; $t_{\rm 3}$, $t_{\rm ж}$, $t_{\rm K}$ — соответственно продолжительность зеленой, желтой и красной фазы светофора, c; v — расчетная скорость движения потока на перегоне, м/c; α — ускорение при разгоне (1,2 м/c²); β — замедление при торможении (1,5 м/c²); t_{Δ} — средняя продолжительность задержки перед светофором, c.

Продолжительность цикла светофора

$$T_{\text{II}} = 2 \cdot t_{\text{K}} + t_{\text{K}} + t_{3}. \tag{4.6}$$

Средняя продолжительность задержки перед светофором

$$t_{\Delta} = \frac{t_{\kappa} + 2t_{\kappa}}{2} \,. \tag{4.7}$$

4.3 Определение необходимого числа полос движения

4.3.1. Перспективная интенсивность движения

Интенсивность движения при проектировании улиц измеряется в авт./ч. Т.к. на улицах наблюдается смешанное движение различных видов транспорта, то поток приводят к одному виду (легковым автомобилям) с помощью специальных коэффициентов K_{np} [3]: - грузовые автомобили до 2 т – 1,3;

Таблица 4.3 – Состав потока и его интенсивность

Состав потока	%	Перспективная интенсивность, авт/час, N_i	Коэф-т приведения, $K_{\text{пр},i}$	Приведенная интенсивность, авт/час
легковых	72	634	1	634
до 2т	18	159	1,3	239
от 2 до 6	6	56	1,4	78,4
от 6 до 8	4	32	1,6	51,2
от 8 до 14	0	0	1,8	0
автобусов	0	0	2,5	0
троллейбусов	0	0	4,6	0
ВСЕГО	100	881		1003

4.3.2 Пропускная способность на перегоне между перекрестками

$$N_{\text{прив}} = \sum_{i=1}^{M} N_i K_{np,i} . {4.8}$$

Число полос движения на перегоне

$$n = \frac{N_{\text{прив}}/2}{N} \,. \tag{4.9}$$

Округляем до целого значения в большую сторону.

4.3.3 Пропускная способность у «стоп-линии»

$$N_c = \frac{3600 \cdot (t_3 - t_l)}{t_n T_{\text{II}}},\tag{4.10}$$

 t_3 — продолжительность зеленого сигнала светофора, c; t_l — промежуток времени между включением зеленого сигнала и пересечением стоп-линии первым автомобилем (0 c); t_n — средний интервал между автомобилями при пересечении ими стоп-линии (2,2 c).

Число полос движения у «стоп-линии»

$$n = \frac{N_{\text{прив}}/2}{N_c}. \tag{4.11}$$

Количество полос движения у перекрестка со светофорным регулированием может быть увеличено на 1-2 полосы движения на расстоянии не менее 50 м от «стоп-линии». Уширение допускается осуществлять за счет уменьшения ширины разделительных полос.

Количество полос движения у перекрестка не может быть менее количества полос движения на перегоне.

4.4 Ширина тротуара

Тротуары предназначены для движения пешеходов и размещают их обычно по обе стороны улицы вблизи красной линии. Общую их ширину определяют с учетом категории улицы, в зависимости от пешеходного движения, учитывая дополнительную часть для размещения опор освещения и мачт контактной сети электротранспорта (0,5-1,2 м), а при наличии магазинов и полосу вдоль витрин (0,85 м), а также посадки деревьев. Ширина одной пешеходной полосы -0,75 м.

$$B_{mp} = \frac{N_{\text{nem}}}{N_0} \cdot 0.75 + a, \qquad (4.12)$$

где $N_{\text{пеш}}$ — интенсивность пешеходного движения, чел/ч; N_0 — пропускная способность одной полосы пешеходного движения (см табл. 3); a — интервал безопасности.

± •	
Расположение тротуаров	Интенсивность движения на полосе чел./час
Тротуары, расположенные у линии застройки при наличии в прилегающих зданиях	700
магазинов	
Тротуары, отдаленные от линии застройки	800
Тротуары и пешеходные дорожки в пределах зеленых насаждений	1000
Прогулочные пешеходные дорожки	600
Пешеходные переходы через проезжую часть в одном уровне	1200

Таблица 4.4 – Пропускная способность одной полосы движения [4]

Интервал безопасности *а* принимается равным 0,5 м, если тротуар непосредственно примыкает к застройке. Если между тротуаром и проезжей частью не устраивается газон, то ширину тротуара увеличивают на 0,5-1,2 м для размещения мачт освещения, опор контактной сети, дорожных знаков.

Наименьшую ширину тротуаров принимают: для магистральных улиц общегородского значения -4,5 м; районного значения -3,0 м; жилых улиц -2,25 м.

Источники информации

- 1. СП 42.133330.2011 Градостроительство. Планировка и застройка городских и сельских поселений. Актуал. редакция СНиП 2.07.01-89* / Мин-во регионального развития Российской Федерации. М, 2010. 113 с.
- 2. Проектирование городских улиц и дорог: учебно-методическое пособие [Электронный ресурс] / сост. В.И. Жуков, С.В. Копылов; под ред. В.И. Жукова. Электрон. дан. Красноярск: Сиб. федер. ун-т, 2014. 80 с.
- 3. СП 34.13330.2012 Автомобильные дороги. Актуал. редакция СНиП 2.05.02-85* / Мин-во регионального развития Российской Федерации. М., 2013. 139 с.
- 4. Проектирование участка городской улицы / В.О. Егорушкин. О.Ю. Антоненко: методические указания к курсовой работе для студентов специальности 290500 «Городское строительство и хозяйство»/ КрасГАСА. Красноярск, 2005. 46 с.